Berberine inhibits human neuroblastoma cell growth through induction of p53-dependent apoptosis.

نویسندگان

  • Myoung Suk Choi
  • Dong Yeon Yuk
  • Ju Hoon Oh
  • Hai Young Jung
  • Sang Bae Han
  • Dong Cheul Moon
  • Jin Tae Hong
چکیده

Berberine, an alkaloid, has anti-tumor properties in some cancer cells, but action mechanisms are not clear yet. We here investigated the anticancer activity of berberine and possible mechanisms in human neuroblastoma SK-N-SH and SK-N-MC cells. The p53-expressing cells, SK-N-SH (IC50=37 microM) were more susceptible to berberine than the p53-deficient cells, SK-N-MC (IC50 > or =100 microM) without cytotoxic effect on the cortical neuronal cells. Berberine caused cell cycle arrest in G0/G1 phase and apoptotic cell death, and these effects were much greater in SK-N-SH cells than those in SK-N-MC cells. Berberine much greatly decreased G0/G1 phase-associated cyclin and cyclin-dependent kinase (cyclin D1, cyclin E, Cdk2, and Cdk4) expression, and increased apoptotic gene expression and activation of caspase-3 in SK-N-SH cells. Exploration of p53 siRNA or pifithrin-alpha (PFT-alpha), a p53 inhibitor, in the SK-N-SH cells resulted in increase of IC50 values for cell viability, and decreased apoptotic cell death, expression of p53 and activation of caspase-3. Therefore, these results showed that berberine causes p53-dependent apoptotic death of neuroblastoma cells, and suggested that berberine may be useful as an anticancer agent for neuroblastoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Berberine inhibits p53-dependent cell growth through induction of apoptosis of prostate cancer cells.

Berberine has anti-tumor properties in some cancer cells including prostate cancer, but the exact mechanisms and in vivo effects are unclear. We investigated anti-cancer activity of berberine in vitro and in vivo, and possible mechanisms in prostate cancer cells. Berberine treatment inhibited cell cancer growth in a concentration (0-50 microM) and time- (0-48 h) dependent manner without any gro...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Effects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines

Background:  The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anticancer research

دوره 28 6A  شماره 

صفحات  -

تاریخ انتشار 2008